The degree of phylogenetic disparity of islet grafts dictates the reliance on indirect CD4 T-cell antigen recognition for rejection.

نویسندگان

  • Gina R Rayat
  • Zachary A Johnson
  • Joshua N Beilke
  • Gregory S Korbutt
  • Ray V Rajotte
  • Ronald G Gill
چکیده

Cellular xenograft rejection involves a pronounced contribution of CD4 T-cells recognizing antigens in association with recipient MHC class II molecules. However, the requirement for such "indirect" antigen recognition for acute islet xenograft is not clear, especially as a function of the phylogenetic disparity between the donor and recipient species. In vitro studies show that C57BL/6 (B6) mouse T-cells respond directly to either allogeneic BALB/c or phylogenetically related xenogeneic WF rat stimulator cells while having undetectable responses to phylogenetically disparate porcine stimulator cells. Although all types of grafts rejected acutely in wild-type mice, this response demonstrated markedly differing dependence on host MHC class II antigen presentation, depending on the donor species. While BALB/c islet allografts were acutely rejected in B6 MHC class II-deficient (C2D) recipients, WF rat xenografts demonstrated marked prolongation in C2D hosts relative to wild-type recipients. Interestingly, neonatal porcine islet (NPI) xenografts uniformly survived long term (>100 days) in untreated C2D hosts despite transfer of wild-type CD4 T-cells, demonstrating that survival in C2D recipients was not secondary to a lack of CD4 T-cells seen in such mice. Taken together, these results show a marked hierarchy in the requirement for host MHC class II-restricted indirect pathway in the rejection of pancreatic islet grafts. Thus, while cellular rejection of porcine xenografts is generally quite vigorous, this pathway is relatively finite, displaying a major reliance on host MHC class II-dependent antigen presentation for acute rejection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tolerance to antigen-presenting cell-depleted islet allografts is CD4 T cell dependent.

Pretreatment of pancreatic islets in 95% oxygen culture depletes graft-associated APCs and leads to indefinite allograft acceptance in immunocompetent recipients. As such, the APC-depleted allograft represents a model of peripheral alloantigen presentation in the absence of donor-derived costimulation. Over time, a state of donor-specific tolerance develops in which recipients are resistant to ...

متن کامل

NK cells contribute to the skin graft rejection promoted by CD4+ T cells activated through the indirect allorecognition pathway.

Rejection of solid organ allografts is promoted by T cells. Recipient T cells can directly recognize intact allo-MHC molecules on donor cells and can also indirectly recognize processed donor-derived allo-peptides presented by recipient antigen-presenting cells in the context of self-MHC molecules. Although CD4(+) T cells primed through the indirect allorecognition pathway alone are sufficient ...

متن کامل

MHC-mismatched islet allografts are vulnerable to autoimmune recognition in vivo.

When transplanted into type 1a diabetic recipients, islet allografts are subject both to conventional allograft immunity and, presumably, to recurrent autoimmune (islet-specific) pathogenesis. Importantly, CD4 T cells play a central role both in islet allograft rejection and in autoimmune disease recurrence leading to the destruction of syngeneic islet transplants in diabetic NOD mice. However,...

متن کامل

Indirect T cell allorecognition and alloantibody-mediated rejection of MHC class I-disparate heart grafts.

Recent studies in the rat have identified a role for T cell-dependent alloantibody in rejection of MHC class I-disparate allografts. RT1Aa-disparate PVG.R8 heart grafts are rejected acutely in naive, and hyperacutely in sensitized, PVG.RTIu recipients by CD4 T cell-dependent alloantibody. Here, we examined the T cell Ag recognition pathways responsible and show that direct injection into skelet...

متن کامل

Islet Amyloid Polypeptide is not a Target Antigen for CD8+ T-Cells in Type 2 Diabetes

Background: Type 2 diabetes (T2D) is a chronic metabolic disorder in which beta-cells are destroyed. The islet amyloid polypeptide (IAPP) produced by beta-cells has been reported to influence beta-cell destruction. Objective: To evaluate if IAPP can act as an autoantigen and therefore, to see if CD8 + T-cells specific for this protein might be present in T2D patients. Methods: Peripheral blood ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 52 6  شماره 

صفحات  -

تاریخ انتشار 2003